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Hot Section Gas Turbine Materials  

   Land-based gas turbines 
Ø  drive to increase service 

temperature to improve 
efficiency; increase life 

Ø  replace large directionally-
solidified Ni-base superalloys 
with single crystal superalloys 

Power Output:  375 MW 
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Single Crystal Alloy being Investigated for 
IGT Applications 

CMSX-8:  1.5% Re "alternative 2nd gen alloy" replacing 3.0% Re 
containing alloys (e.g., CMSX-4, PWA1484) 

[Wahl and Harris, 2012] 

Strength 

Creep 
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Effect of Tmin on OP TMF of CMSX-4 

[Arrell et al., 2004] 

3x 

2x drop 

[Kirka, 2014] 

CMSX-4 [001] 

CM247LC DS in Longitudinal Dir. 
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Life Modeling Approach 

Damage Mechanism  
Modules 

Fatigue 

Creep-Fatigue 

Environment-  
Fatigue 

Creep 
Ratchetting 

 Ni
fat

 Ni
env

 Ni
cr

Figure _: Methods for determining cycles to crack initiation
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Accurrate representations of the deformation response 
highly critical for predicting crack formation 
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Primary Objectives of UTSR Project 

•  Creep-fatigue interaction experiments on 
CMSX-8 

•  Aging studies and influence of aging on 
creep-fatigue interactions 

•  Crystal viscoplasticity to capture the 
deformation response 
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Creep-Fatigue Interaction Studies 

•  Conventional creep-fatigue (baseline) 
Ø  ASTM E2714-09 

•  Long-term creep followed by fatigue 
•  Fatigue followed by long-term creep 
•  Impact of pre-aging 
•  Creep-fatigue interaction life analysis 
•  Orientations:  <001>, <111>, <011> 
•  Application to TMF with long dwells 
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Influence of stress and temperature on 
modes of creep deformation 

[Reed, 2006; Ma, Dye, and Reed, 2008] 

CMSX-4 

Tertiary – dislocation activity restricted to 
a/2<110> form operating on {111} slip planes 
in the γ channels  

Primary – γ’ particles are sheared by 
dislocation ribbons of overall Burgers vector 
a<112> dissociated into superlattice partial 
dislocations separated by a stacking fault; 
shear stress must above threshold stress 
(about 550 MPa – uniaxial normal stress) 

Rafting – transport of matter constituting the 
γ phase out of the vertical channels and into 
the horizontal ones (tensile creep case) 
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Asymmetry in Creep at 750°C/750 MPa 

[Tsuno et al., 2008] 

Note:  Primary Creep Regime (based on tension) 

Mar-M247LC DS PWA1480 

CMSX-4 

TMS-75 
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Asymmetry in Creep at 900°C/392 MPa 

Note:  Tertiary Creep Regime (based on tension) 

[Tsuno et al., 2008] 

Mar-M247LC DS PWA1480 

CMSX-4 TMS-75 
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•  LMP	  =	  24.70	  
•  Life	  to	  rupture	  =	  98.90	  hrs.	  
•  Temp	  =	  850	  C	  
•  Stress	  =	  650	  MPa	  
•  Alpha	  =	  4.1	  
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Influence of prior creep & fatigue on creep 

[Pierce, Palazotto, & Rosenberger, 2010] 

PWA1484 
871°C/517MPa L! ' = 0.319µm

f! ' = 0.65

L! ' = 0.418µm
f! ' = 0.67

1
4 N f

1
2 N f

no fatigue 

PWA1484 exposed to 871°C for 32 hrs 
also reduces primary creep    

      [Wilson & Fuchs, Superalloys 2008] 

CMSX-4 

[Ma, Dye, and Reed, 2008] 
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Microstructure Evolution in Blades 
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Rafting and Coarsening of γ’ 

Tension 

[Epishin et al., 2010] 

N-raft 

P-raft 

CMSX-4 
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Microstructure after tensile creep 
at 950°C/185MPa for different times 

R = L
2T

[Matan, Cox, Rae, & Reed, 1999] 

CMSX-4 
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Rafting in the “elastic” regime 

Ø  Controlled by difference between the elastic strain energy in the 
horizontal and vertical γ channels 

Ø  Material transport driven by gradient in elastic strain energy density 
(“elastic” regime when plastic strain < 0.1%) 

Initial State: Modified State: 

  
! =

2 a" ' # a"( )
a" ' + a"

superposition of applied and misfit stresses drive deformation 
in horizontal channels promoting N-raft formation 

For negative 
mismatch 

alloys 
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Rafting in the “plastic” regime 

REPLACE 

5um 5um 

5um 5um 

Virgin Coarsened 

N-Raft P-Raft 

Virgin Coarsened 

N-Raft P-Raft 

[Mughrabi et al., 1997] 

Ø  Dislocations in the horizontal channels (tensile creep case) and their adsorption at the γ/γ’ 
interfaces, resulting in loss of perfect coherency and reduction in elastic misfit strains, is 
responsible for providing the kinetic path to enable rafting to occur at a reasonable rate. 

Ø  Rate in this regime is largely independent of whether the applied stress remains acting or not. 
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Influence of aging without applied stress 

[Matan, Cox, Rae, & Reed, 1999] 

CMSX-4 
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Influence of aging on hardness 

CMSX-4 
950°C/185MPa 

Note:  The significant drop in hardness at 0.1% creep strain, representing the threshold strain, is 
attributed to the loss of coherency of the γ/γ’ interfaces because of misfit dislocations present on 
these interfaces; hence termed “plastic” regime. 

[Matan, Cox, Rae, & Reed, 1999] 

“elastic” regime “plastic” regime 
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5um 5um 

Aging Studies under Stress 

5um 5um 

Fully Rafted 
170 MPa 

Partially Rafted 
100 MPa Test conditions 

CM247LC-DS 
Temperature: 950°C 

Force: 1260kN 
Time: 500 hrs 

 
 

Objective:  Obtain kinetic data to predict rafting and coarsening as a function of temperature, 
stress, microstructure and time 
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Artificial Aged Microstructure Generation  

Compression Creep Frame 

5um 5um 

5um 5um 

Virgin Coarsened 

N-Raft P-Raft 

Four Different Microstructures 
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MICROSTRUCTURE-SENSITIVE 
CRYSTAL VISCOPLASTICITY MODELS 
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components 

Length Scales in Ni-base Superalloys 

[Shenoy, Tjipowidjojo, and McDowell, 2008] 

[Reed, 2008] 

310 GPa 

124 GPa 
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Slip Systems 
•  Octahedral slip systems 

Ø  Active over entire temperature range 
Ø  [100] loading orientation 
Ø  T/C asymmetry in precipitates 
Ø  Anomalous temperature dependence 

•  Cube slip systems  
Ø  Active at higher temperatures 
Ø  [111] loading orientation 
Ø  Less T/C asymmetry 
Ø  Macroscopic manifestation of “Zig-Zag 

mechanism,” [Bettge and Osterle, 
1999] 

Octahedral slip system 

Cube slip [Bettge and Osterle, 1999]  

Cube slip system 

Slip systems 
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Crystal viscoplasticity – kinematic relations 

Kinematic relations including 
temperature dependence 

Macroscopic plastic 
velocity gradient 

Deformation gradient 

F =
!x
!X

= Fe "F p "F#

 L = !F !F"1

Velocity gradient 

 
Lp = !F p F p!1 = !" (# ) so

(# )$no
(# )( )

#=1

Nslip
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CVP Models for Ni-base Superalloys 

Ma, Dye, & Reed (2008) 

Shenoy, Tjiptowidjojo, & McDowell (2008) 

MacLachlan, Wright, Gunturi, & Knowles (2001) 
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Shenoy, Gordon, McDowell, & Neu (2005) 

Limited to CMSX-4 at 950°C in tertiary regime (stress ≤ 450 MPa) – coupled CVP with damage mechanics 

Dislocation-based ISV considering primary and tertiary creep regimes (limited to 
creep of CMSX-4 at 950°C) 

Creep-fatigue using dislocation-based ISV 

Creep-fatigue and TMF (temperature-dependent) 
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Kirka & Neu (2014) 
Added state variables to account for state of aged microstructure in temperature-dependent formulation 
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Ma et al. model predictions showing 
microstructure sensitivity 

Tertiary creep 
950°C/400MPa 

Primary creep 
750°C/770MPa 

Deformation along [001] 
Volume fraction of γ’ fixed at 0.7 

[Ma, Dye, and Reed, 2008] 
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Ma et al. model predictions showing 
orientation sensitivity 

[Ma, Dye, and Reed, 2008] 

[MacKay and Meier, 1982] 

CMSX-4 

Creep strain in tertiary regime 
900°C/400MPa (111 hr) 

Creep strain in primary regime 
750°C/600MPa (111 hr) 

Primary creep performance 
based on experiments 
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Kirka (2014) modifications to capture 
evolution of γ’precipitates  

•  Directional coarsening is roughly a constant volume process 
•  Stress-free coarsening maintains proportionality between all precipitate/channel dimensions 
•  Microstructure uniqueness is defined by 2 independent dimensions 

Isotropic Coarsening: 

Rafting: 
[Tinga, Brekelmans, and Geers, 2009] 
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Sensitivity of Composition on Diffusivity 

Thermo-Calc / DICTRA 
Databases: TCNi5 / MOBNi2 
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Composition Segregation ---- Results 
 

CMSX-10   wt%Cr wt%Co wt%Mo wt%W wt%Ta wt%Re wt%Al wt%Ti wt%Ni 

overall nominal  2 3 0.4 5 8 6 5.7 0.2 69.7 

 experiment 
(dendrite) 3.64 4.95 0.73 9.74 2.34 16.58 1.99 0.06 59.98 

  
calculation 

from 
DICTRA 

3.64 6.39 0.67 8.54 0.94 14.2 2.39 0.06 63.17 

 experiment 
(dendrite) 1.29 2.64 0.34 6.96 8.92 4.7 6.93 0.15 68.08 

  
calculation 

from 
DICTRA 

1.06 1.07 0.25 2.99 12 1.34 7.59 0.28 73.42 

                      

CMSX-8   wt%Cr wt%Co wt%Mo wt%W wt%Ta wt%Re wt%Al wt%Ti wt%Ni 

  nominal 5.4 10 0.6 8 8 1.5 5.7 0.7 60.1 

T=1223K  10.7 20.1 1.3 16.5 0.93 3.47 2.1 0.17 44.73 

   1.6 2.67 0.13 2.05 12.97 0.11 8.28 1.08 71.11 

                      

CMSX-4   wt%Cr wt%Co wt%Mo wt%W wt%Ta wt%Re wt%Al wt%Ti wt%Ni 

  nominal 6.5 10 0.6 6 6 3 5.6 1 61.3 

T=1223K  12.15 18.42 1.21 11.57 0.66 6.54 2.16 0.19 47.1 

   1.91 2.95 0.16 1.56 10.37 0.23 8.39 1.72 72.71 

 Composition: 
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CVP Model Development Plans 

•  Implement Ma et al. (2008) model 
Ø  add kinematic hardening to improve cyclic loading response 
Ø  CMSX-8 (How much different than CMSX-4?  Can it be tied to %Re?) 

•  Theoretical extensions to embed aging in CVP 
•  Implementation of CVP model in UMAT/ABAQUS 
•  Calibration experiments on each microstructure (i.e., 

artificially aged conditions) of CMSX-8 
•  Calibration of CVP parameters to CMSX-8 

•  Validation and demonstration 
•  Reduced-order formulations for material definition 

Ø  using built in ABAQUS models (uncoupled creep and plasticity; two-layer 
viscoplasticity) 


